skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miceli, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract By using surface brightness maps of Tycho’s supernova remnant (SNR) in radio and X-rays, along with the properties of thermal and synchrotron emission, we have derived the postshock density and magnetic field (MF) strength distributions over the projection of this remnant. Our analysis reveals a density gradient oriented toward the northwest, while the MF strength gradient aligns with the Galactic plane, pointing eastward. Additionally, utilizing this MF map, we have derived the spatial distributions of the cutoff frequency and maximum energy of electrons in Tycho’s SNR. We further comment on the implications of these findings for interpreting the gamma-ray emission from Tycho’s SNR. 
    more » « less
  2. Abstract The origin of cosmic rays is a pivotal open issue of high-energy astrophysics. Supernova remnants are strong candidates to be the Galactic factory of cosmic rays, their blast waves being powerful particle accelerators. However, supernova remnants can power the observed flux of cosmic rays only if they transfer a significant fraction of their kinetic energy to the accelerated particles, but conclusive evidence for such efficient acceleration is still lacking. In this scenario, the shock energy channeled to cosmic rays should induce a higher post-shock density than that predicted by standard shock conditions. Here we show this effect, and probe its dependence on the orientation of the ambient magnetic field, by analyzing deep X-ray observations of the Galactic remnant of SN 1006. By comparing our results with state-of-the-art models, we conclude that SN 1006 is an efficient source of cosmic rays and obtain an observational support for the quasi-parallel acceleration mechanism. 
    more » « less